30 research outputs found

    Synchronization of OFDM at low SNR over an AWGN channel

    Get PDF
    This paper is based on Extended Symbol OFDM (ES-OFDM) where symbols are extended in time. This way ES-OFDM can operate at low SNR. Each doubling of the symbol length improves the SNR performance by 3 dB in case of a coherent receiver. One of the basic questions is how to synchronize to signals far below the noise floor. An algorithm is presented which is based on the transmission of pilot symbols. At the receiver, the received signal is cross correlated with the known pilot symbol and the maximum magnitude is determined. The position of the maximum value within the cross correlation function indicates the time difference between transmitter and receiver. The performance of the algorithm in case of an Additive White Gaussian Noise (AWGN) channel, is assessed based on a theoretical approximation of the probability of correct detection of the time difference. The theoretical approximation matches with simulation results and shows that synchronization can be achieved for low (negative) SNRs

    Adaptive OFDM System Design For Cognitive Radio

    Get PDF
    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed user. In order to support such an adaptive OFDM system, we propose a Multiprocessor System-on-Chip (MPSoC) architecture which can be dynamically reconfigured. However, the complexity and flexibility of the baseband processing makes the MPSoC design a difficult task. This paper presents a design technology for mapping flexible OFDM baseband for Cognitive Radio on a multiprocessor System-on-Chip (MPSoC)

    Near field phased array DOA and range estimation of UHF RFID tags

    Get PDF
    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The system is calibrated for phase offsets introduced by hardware as simulations show the sensitivity to these offsets. Experiments with this calibrated receiver array give inaccurate ranging estimates. A solution is to calibrate the system for every angle, allowing meaningful range estimates. Experiments in a different environment show a reduced result, indicating the need for extensive calibration

    Angular CMA: A modified Constant Modulus Algorithm providing steering angle updates

    Get PDF
    Conventional blind beamforming algorithms have no direct notion of the physical Direction of Arrival angle of an impinging signal. These blind adaptive algorithms operate by adjusting the complex steering vector in the case of changing signal conditions and directions. This paper presents Angular CMA, a blind beamforming method that calculates steering angle updates (instead of weight vector updates) to keep track of the desired signal. Angular CMA and its respective steering angle updates are particularly useful in the context of mixed-signal hierarchical arrays as means to find and distribute steering parameters. Simulations of Angular CMA show promising convergence behaviour, while having a lower complexity than alternative methods (e.g., MUSIC)

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    A CMOS spectrum analyzer frontend for cognitive radio achieving +25dBm IIP3 and −169 dBm/Hz DANL

    Get PDF
    A dual RF-receiver preceded by discrete-step attenuators is implemented in 65nm CMOS and operates from 0.3– 1.0 GHz. The noise of the receivers is reduced by cross-correlating the two receiver outputs in the digital baseband, allowing attenuation of the RF input signal to increase linearity. With this technique a displayed average noise level below -169 dBm/Hz is obtained with +25 dBm IIP3, giving a spurious-free dynamic range of 89 dB in 1 MHz resolution bandwidth

    DVB-S Signal Tracking Techniques for Mobile Phased Arrays

    Get PDF
    Abstract—A system that uses adaptive beamforming techniques for mobile Digital Video Broadcasting Satellite (DVB-S) reception is proposed in this paper. The purpose is to enable DVB-S reception in moving vehicles. Phased arrays are able to electronically track the desired signal during dynamic behaviour of the vehicle the array is mounted on.\ud The proposed system uses blind beamforming to adapt the array steering vector to changing signal (conditions and) directions. Movement of the vehicle, the phased array is mounted on, leads to modulus and phase deviations at the beamformer output. An extended version of the Constant Modulus Algorithm (CMA) algorithm is used to adapt the steering vector weights to compensate for those deviations.\ud For simulation of the proposed system a model of vehicle dynamics is used to generate realistic antenna data. Simulation of the proposed system based on this antenna data shows appropriate corrections for modulus and phase deviations

    Modeling correlation of quantized noise and periodic signals

    Get PDF
    A model for determining the cross-correlation function of partially correlated noise is presented. In this model a strong interferer is included and represented by a periodic signal common to both channels of the correlator. A general expression for the correlation function is deduced and verified. The power spectrum of a calculated correlation function is compared with a simulation. The results presented in this paper form a base for the design of modern multibit correlators. These are part of future generation radio astronomy receivers which increasingly have to cope with man-made interfering signals

    A Correlating Receiver for OFDM at Low SNR

    Get PDF
    By extending OFDM symbols, acceptable BER performance can be achieved at low SNRs. Two alternative differential receiver architectures are presented, a receiver based on a FX correlator (Fourier transformation before correlation) and based on an XF correlator (correlation before Fourier transformation). To reduce the complexity and hence the power consumption of both the ADC and the first digital processing stage single- or two bit quantization is used. The receiver based on the XF correlator is more suited to exploit such coarse quantization. Two basic effects are visible if coarse quantization is used. First, the BER performance is reduced due to the introduction of quantization errors. Second, beyond certain SNR levels, the BER performance does not increase due to the correlation between quantization errors. Furthermore, oversampling increases BER performance considerably. For single bit quantization with oversampling, acceptable BERs (< 10 −3) can be achieved for a limited SNR range for symbol extension factors of 32 and 64. In case of two bit quantization without oversampling, the results are comparable with single bit quantization with two times oversampling. For two bit quantization in combination with two times oversampling, acceptable BERs are achieved for symbol extension factors 8, 16, 31 and 64

    A correlating receiver for ES-OFDM using multiple antennas

    Get PDF
    Extended Symbol OFDM (ES-OFDM) is applied in case of a multiple antenna receiver. The receiver architecture is based on the observation that OFDM constellation points can be determined by means of correlation. Summing correlations between multiple antennas leads to an interferometer receiver. This approach gives the freedom to choose which correlations are summed. Three antenna structures are explored: a Uniform Linear Array (ULA) and a sparse array where all correlations are summed and a sparse array where only a selection of correlations are summed. The sensitivity of the Bit Error Rate (BER) of an ES-OFDM communication link to an interfering source from different directions is studied. The ULA leads to a relatively wide BER main lobe, the range of angles around the Direction of Arrival of the ES-OFDM signal where the BER is high. Outside this range, the interfering source is suppressed to low BERs, in many cases beyond requirements. By using sparse arrays, the width of the BER main lobe can be traded against the BER levels outside the BER main lobe. This effect is shown for a sparse array where all possible correlations are summed. By summing only those correlations that lead to a uniform co-array, BER levels outside the BER main lobe are lower for an interferometer receiver compared to a traditional beamforming receiver
    corecore